This blog post is an initial announcement of a new package, safe-exceptions (and Github repo). This is a follow up to a number of comments I made in last week's blog post. To quote the README:
Safe, consistent, and easy exception handling
Runtime exceptions - as exposed in
baseby theControl.Exceptionmodule - have long been an intimidating part of the Haskell ecosystem. This package, and this README for the package, are intended to overcome this. By providing an API that encourages best practices, and explaining the corner cases clearly, the hope is to turn what was previously something scary into an aspect of Haskell everyone feels safe using.
This is an initial release of the package. I fully expect the library to expand in the near future, and in particular there are two open issues for decisions that need to be made in the short term. I'm releasing the package in its current state since:
- I think it's useful as-is
- I'm hoping to get feedback on how to improve it
On the second point, I've created
a survey to get feedback on the interruptible/uninterruptible
issue and the throw naming issue. Both are described
in this blog post.
I'm hoping this library can bring some sanity and comfort to
people dealing with IO and wanting to ensure proper
exception handling! Following is the content of the README, which
can also be read on
Github.
Goals
This package provides additional safety and simplicity versus
Control.Exception by having its functions recognize
the difference between synchronous and asynchronous exceptions. As
described below, synchronous exceptions are treated as
recoverable, allowing you to catch and handle them as well
as clean up after them, whereas asynchronous exceptions can only be
cleaned up after. In particular, this library prevents you from
making the following mistakes:
- Catching and swallowing an asynchronous exception
- Throwing an asynchronous exception synchronously
- Throwing a synchronous exception asynchronously
- Swallowing asynchronous exceptions via failing cleanup handlers
Quickstart
This section is intended to give you the bare minimum information to use this library (and Haskell runtime exceptions in general) correctly.
- Import the
Control.Exception.Safemodule. Do not importControl.Exceptionitself, which lacks the safety guarantees that this library adds. Same applies toControl.Monad.Catch. - If something can go wrong in your function, you can report this
with the
throw. (For compatible naming, there are synonyms for this ofthrowIOandthrowM.) - If you want to catch a specific type of exception, use
catch,handle, ortry. - If you want to recover from anything that may go wrong
in a function, use
catchAny,handleAny, ortryAny. - If you want to launch separate threads and kill them externally, you should use the async package.
- Unless you really know what you're doing, avoid the following
functions:
catchAsynchandleAsynctryAsyncimpureThrowthrowTo
-
If you need to perform some allocation or cleanup of resources, use one of the following functions (and don't use the
catch/handle/tryfamily of functions):onExceptionwithExceptionbracketbracket_finallybracketOnErrorbracketOnError_
Hopefully this will be able to get you up-and-running quickly.
Request to readers: if there are specific workflows that you're unsure of how to accomplish with this library, please ask so we can develop a more full-fledged cookbook as a companion to this file.
Terminology
We're going to define three different versions of exceptions. Note that these definitions are based on how the exception is thrown, not based on what the exception itself is:
-
Synchronous exceptions are generated by the current thread. What's important about these is that we generally want to be able to recover from them. For example, if you try to read from a file, and the file doesn't exist, you may wish to use some default value instead of having your program exit, or perhaps prompt the user for a different file location.
-
Asynchronous exceptions are thrown by either a different user thread, or by the runtime system itself. For example, in the
asyncpackage,racewill kill the longer-running thread with an asynchronous exception. Similarly, thetimeoutfunction will kill an action which has run for too long. And the runtime system will kill threads which appear to be deadlocked onMVars orSTMactions.In contrast to synchronous exceptions, we almost never want to recover from asynchronous exceptions. In fact, this is a common mistake in Haskell code, and from what I've seen has been the largest source of confusion and concern amongst users when it comes to Haskell's runtime exception system.
-
Impure exceptions are hidden inside a pure value, and exposed by forcing evaluation of that value. Examples are
error,undefined, andimpureThrow. Additionally, incomplete pattern matches can generate impure exceptions. Ultimately, when these pure values are forced and the exception is exposed, it is thrown as a synchronous exception.Since they are ultimately thrown as synchronous exceptions, when it comes to handling them, we want to treat them in all ways like synchronous exceptions. Based on the comments above, that means we want to be able to recover from impure exceptions.
Why catch asynchronous exceptions?
If we never want to be able to recover from asynchronous
exceptions, why do we want to be able to catch them at all? The
answer is for resource cleanup. For both sync and async
exceptions, we would like to be able to acquire resources - like
file descriptors - and register a cleanup function which is
guaranteed to be run. This is exemplified by functions like
bracket and withFile.
So to summarize:
- All synchronous exceptions should be recoverable
- All asynchronous exceptions should not be recoverable
- In both cases, cleanup code needs to work reliably
Determining sync vs async
Unfortunately, GHC's runtime system provides no way to determine if an exception was thrown synchronously or asynchronously, but this information is vitally important. There are two general approaches to dealing with this:
-
Run an action in a separate thread, don't give that thread's ID to anyone else, and assume that any exception that kills it is a synchronous exception. This approach is covered in the School of Haskell article catching all exceptions, and is provided by the enclosed-exceptions package.
-
Make assumptions based on the type of an exception, assuming that certain exception types are only thrown synchronously and certain only asynchronously.
Both of these approaches have downsides. For the downsides of the type-based approach, see the caveats section at the end. The problems with the first are more interesting to us here:
- It's much more expensive to fork a thread every time we want to deal with exceptions
- It's not fully reliable: it's possible for the thread ID of the forked thread to leak somewhere, or the runtime system to send it an async exception
- While this works for actions living in
IO, it gets trickier for pure functions and monad transformer stacks. The latter issue is solved via monad-control and the exceptions packages. The former issue, however, means that it's impossible to provide a universal interface for failure for pure and impure actions. This may seem esoteric, and if so, don't worry about it too much.
Therefore, this package takes the approach of trusting type
information to determine if an exception is asynchronous or
synchronous. The details are less interesting to a user, but the
basics are: we leverage the extensible extension system in GHC and
state that any extension type which is a child of
SomeAsyncException is an async exception. All other
exception types are assumed to be synchronous.
Handling of sync vs async exceptions
Once we're able to distinguish between sync and async exceptions, and we know our goals with sync vs async, how we handle things is pretty straightforward:
- If the user is trying to install a cleanup function (such as
with
bracketorfinally), we don't care if the exception is sync or async: call the cleanup function and then rethrow the exception. - If the user is trying to catch an exception and recover from it, only catch sync exceptions and immediately rethrow async exceptions.
With this explanation, it's useful to consider async exceptions as "stronger" or more severe than sync exceptions, as the next section will demonstrate.
Exceptions in cleanup code
One annoying corner case is: what happens if, when running a
cleanup function after an exception was thrown, the cleanup
function itself throws an exception. For this, we'll
consider action `onException` cleanup. There are four
different possibilities:
actionthrew sync,cleanupthrew syncactionthrew sync,cleanupthrew asyncactionthrew async,cleanupthrew syncactionthrew async,cleanupthrew async
Our guiding principle is: we cannot hide a more severe exception
with a less severe exception. For example, if action
threw a sync exception, and then cleanup threw an
async exception, it would be a mistake to rethrow the sync
exception thrown by action, since it would allow the
user to recover when that is not desired.
Therefore, this library will always throw an async exception if either the action or cleanup thows an async exception. Other than that, the behavior is currently undefined as to which of the two exceptions will be thrown. The library reserves the right to throw away either of the two thrown exceptions, or generate a new exception value completely.
Typeclasses
The exceptions package provides an abstraction for throwing, catching, and cleaning up from exceptions for many different monads. This library leverages those type classes to generalize our functions.
Naming
There are a few choices of naming that differ from the base libraries:
throwin this library is for synchronously throwing within a monad, as opposed to in base wherethrowIOserves this purpose andthrowis for impure throwing. This library providesimpureThrowfor the latter case, and also provides convenience synonymsthrowIOandthrowMforthrow.- The
catchfunction in this package will not catch async exceptions. Please usecatchAsyncif you really want to catch those, though it's usually better to use a function likebracketorwithExceptionwhich ensure that the thrown exception is rethrown.
Caveats
Let's talk about the caveats to keep in mind when using this library.
Checked vs unchecked
There is a big debate and difference of opinion regarding checked versus unchecked exceptions. With checked exceptions, a function states explicitly exactly what kinds of exceptions it can throw. With unchecked exceptions, it simply says "I can throw some kind of exception." Java is probably the most famous example of a checked exception system, with many other languages (including C#, Python, and Ruby) having unchecked exceptions.
As usual, Haskell makes this interesting. Runtime exceptions are
most assuredly unchecked: all exceptions are converted to
SomeException via the Exception
typeclass, and function signatures do not state which specific
exception types can be thrown (for more on this, see next caveat).
Instead, this information is relegated to documentation, and
unfortunately is often not even covered there.
By contrast, approaches like ExceptT and
EitherT are very explicit in the type of exceptions
that can be thrown. The cost of this is that there is extra
overhead necessary to work with functions that can return different
types of exceptions, usually by wrapping all possible exceptions in
a sum type.
This library isn't meant to settle the debate on checked vs unchecked, but rather to bring sanity to Haskell's runtime exception system. As such, this library is decidedly in the unchecked exception camp, purely by virtue of the fact that the underlying mechanism is as well.
Explicit vs implicit
Another advantage of the
ExceptT/EitherT approach is that you are
explicit in your function signature that a function may fail.
However, the reality of Haskell's standard libraries are that many,
if not the vast majority, of IO actions can throw some
kind of exception. In fact, once async exceptions are considered,
every IO action can throw an exception.
Once again, this library deals with the status quo of runtime
exceptions being ubiquitous, and gives the rule: you should
consider the IO type as meaning both that a
function modifies the outside world, and may throw an
exception (and, based on the previous caveat, may throw any
type of exception it feels like).
There are attempts at alternative approaches here, such as unexceptionalio. Again, this library isn't making a value statement on one approach versus another, but rather trying to make today's runtime exceptions in Haskell better.
Type-based differentiation
As explained above, this library makes heavy usage of type
information to differentiate between sync and async exceptions.
While the approach used is fairly well respected in the Haskell
ecosystem today, it's certainly not universal, and definitely not
enforced by the Control.Exception module. In
particular, throwIO will allow you to synchronously
throw an exception with an asynchronous type, and
throwTo will allow you to asynchronously throw an
exception with a synchronous type.
The functions in this library prevent that from happening via
exception type wrappers, but if an underlying library does
something surprising, the functions here may not work correctly.
Further, even when using this library, you may be surprised by the
fact that throw Foo `catch` (\Foo -> ...) won't
actually trigger the exception handler if Foo looks
like an asynchronous exception.
The ideal solution is to make a stronger distinction in the core libraries themselves between sync and async exceptions.
Deadlock detection exceptions
Two exceptions types which are handled surprisingly are
BlockedIndefinitelyOnMVar and
BlockedIndefinitelyOnSTM. Even though these exceptions
are thrown asynchronously by the runtime system, for our purposes
we treat them as synchronous. The reasons are twofold:
- There is a specific action taken in the local thread - blocking
on a variable which will never change - which causes the exception
to be raised. This makes their behavior very similar to synchronous
exceptions. In fact, one could argue that a function like
takeMVaris synchronously throwingBlockedIndefinitelyOnMVar - By our standards of recoverable vs non-recoverable, these exceptions certainly fall into the recoverable category. Unlike an intentional kill signal from another thread or the user (via Ctrl-C), we would like to be able to detect that we entered a deadlock condition and do something intelligent in an application.
Possible future changes
Interruptible vs uninterruptible masking
This discussion is now being tracked at: https://github.com/fpco/safe-exceptions/issues/3
In Control.Exception, allocation functions and
cleanup handlers in combinators like bracket are
masked using the (interruptible) mask function, in
contrast to uninterruptibleMask. There have been some
debates about the correctness of this in the past, notably
a libraries mailing list discussion kicked off by Eyal Lotem.
It seems that general consensus is:
uninterruptibleMaskis a better choice- But changing the core library like this would potentially break too many programs
In its current version, this library uses mask
(interruptible) for allocation functions and
uninterruptibleMask cleanup handlers. This is a
debatable decision (and one worth debating!). An example of
alternatives would be:
- Use
uninterruptibleMaskfor both allocation and cleanup pieces - Match
Control.Exception's behavior - Provide two versions of each function, or possibly two modules
Naming of the synchronous monadic throwing function
We may decide to rename throw to something else at
some point. Please see
https://github.com/fpco/safe-exceptions/issues/4
Subscribe to our blog via email
Email subscriptions come from our Atom feed and are handled by Blogtrottr. You will only receive notifications of blog posts,
and can unsubscribe any time.
Do you like this blog post and need help with Next Generation Software Engineering, Platform Engineering or Blockchain & Smart Contracts? Contact us.